Image
2 minute read
class Image
Format images for logging to W&B.
See https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes for more information on modes.
Args:
data_or_path
: Accepts numpy array of image data, or a PIL image. The class attempts to infer the data format and converts it.mode
: The PIL mode for an image. Most common are “L”, “RGB”, “RGBA”.caption
: Label for display of image.
When logging a torch.Tensor
as a wandb.Image
, images are normalized. If you do not want to normalize your images, convert your tensors to a PIL Image.
Examples:
# Create a wandb.Image from a numpy array
import numpy as np
import wandb
with wandb.init() as run:
examples = []
for i in range(3):
pixels = np.random.randint(low=0, high=256, size=(100, 100, 3))
image = wandb.Image(pixels, caption=f"random field {i}")
examples.append(image)
run.log({"examples": examples})
# Create a wandb.Image from a PILImage
import numpy as np
from PIL import Image as PILImage
import wandb
with wandb.init() as run:
examples = []
for i in range(3):
pixels = np.random.randint(
low=0, high=256, size=(100, 100, 3), dtype=np.uint8
)
pil_image = PILImage.fromarray(pixels, mode="RGB")
image = wandb.Image(pil_image, caption=f"random field {i}")
examples.append(image)
run.log({"examples": examples})
# log .jpg rather than .png (default)
import numpy as np
import wandb
with wandb.init() as run:
examples = []
for i in range(3):
pixels = np.random.randint(low=0, high=256, size=(100, 100, 3))
image = wandb.Image(pixels, caption=f"random field {i}", file_type="jpg")
examples.append(image)
run.log({"examples": examples})
method Image.__init__
__init__(
data_or_path: 'ImageDataOrPathType',
mode: Optional[str] = None,
caption: Optional[str] = None,
grouping: Optional[int] = None,
classes: Optional[ForwardRef('Classes'), Sequence[dict]] = None,
boxes: Optional[Dict[str, ForwardRef('BoundingBoxes2D')], Dict[str, dict]] = None,
masks: Optional[Dict[str, ForwardRef('ImageMask')], Dict[str, dict]] = None,
file_type: Optional[str] = None
) → None
method Image.guess_mode
guess_mode(
data: Union[ForwardRef('np.ndarray'), ForwardRef('torch.Tensor')],
file_type: Optional[str] = None
) → str
Guess what type of image the np.array is representing.
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.